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Executive Summary

This report summarizes basic results of an intercomparison of the capability of alarge
number of clear-air turbulence (CAT) forecasting algorithms to predict the locations of CAT.
The 14 algorithms considered in the study include a number of algorithms that have been
available for many years, as well as algorithms that are newly under development. The algorithm
forecasts are based on output of the RUC-2 numerical weather prediction model for the period 21
December 1998 to 31 March 1999. Forecasts issued at 1200, 1500, and 1800 UTC, with 3-, 6-,
and 9-hr lead times were included in the study. Turbulence AIRMETS, the operational turbulence
forecast product that isissued by the NWS's Aviation Weather Center (AWC), a'so were
included in the evaluation.

The forecasts were verified using Y es and No turbulence observations from pilot reports
(PIREPS), as well as No observations based on automated vertical accelerometer (AVAR) data
that were obtained from a number of aircraft. The algorithms were evaluated as Y esNo
turbulence forecasts by applying a threshold to convert the output of each algorithmtoaYesor
No value. A variety of thresholds were applied to each agorithm. The verification analyses were
based primarily on the algorithms’ ability to discriminate between Y es and No observations, as
well as the extent of their coverage.

The study was comprised of two components. First, the algorithms were evaluated in
near-real-time by the Real-Time Verification System (RTVS) of the NOAA Forecast Systems
Laboratory (FSL), with results displayed on the World-Wide Web
bd.fsl.noaa.gov/afralrtvs/RTV S-project_des.html)] Second, the verification results were re-
evauated in post-analysis, with additional thresholds applied to each algorithm to provide a
thorough depiction of algorithm quality.

Results of the intercomparison suggest that some algorithms perform somewhat better
than others. In particular, these agorithms have somewhat larger values of the True Skill Statistic
for comparable thresholds, and they have a dlightly larger overall discrimination skill statistic.
However, the best algorithms have very similar performance characteristics. In some (but not al)
cases the algorithm performance is slightly better than the performance of the AIRMETSs. Results
of the study also suggest that further algorithm development is needed before newer algorithms
will show large improvements over some of the older algorithms. Moreover, agorithmslike
Integrated Turbulence Forecasting Algorithm (ITFA) may benefit by not including some
algorithms that don’t have much forecasting skill.

In further analyzing the study results, it will be necessary to devel op appropriate methods
to assign confidence intervals to the verification statistics. The daily statistics are quite variable,
and thisis where the largest differences were found between the RTV S and NCAR evaluations.
The interpolation methods lead to some differences in the results of the verification, as well.
However, the results are qualitatively the same between the verification systems, suggesting
similar relationships between the forecasting capabilities of the various agorithms. Further
analyses will incorporate additional data and more complex analyses.
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1. Introduction

This report summarizesthe initial results available from the 1998-99 intercomparison of
the forecasting capability of various clear-air turbulence (CAT) forecasting algorithms. This
study was undertaken by the Turbulence Product Development Team (PDT) of the Federal
Aviation Administration’s (FAA’s) Aviation Weather Research Program (AWRP).

Purposes of the intercomparison wereto (i) develop a baseline for the quality of current
CAT forecasting algorithms; (ii) demonstrate to-date progress in the development of these
forecasting tools; (iii) examine the strengths and weaknesses of the algorithms; and (iv) perform
an evaluation that is independent, consistent, comprehensive, and fair. To meet the first goal, a
number of different CAT algorithms were included in the study, as were the operational
turbulence forecasts, or Airmen’s Meteorological Advisories (AIRMETS), that are produced by
the National Weather Service's (NWS's) Aviation Weather Center (AWC). To meet the second
goal, algorithms that have been developed over the last severa years, with support of the AWRP,
were included. The third goal will be met through the analyses presented in this report, aswell as
on-going studies of the results by the Quality Assessment Group (QAG) and by the agorithm
developers. Finaly, the fourth goal was met by pre-defining the verification methods and other
features of the intercomparison, with approval by all members of the Turbulence PDT. In
addition, the implementation of the intercomparison and the analyses of the results were the joint
responsibility of the QAG, which includes the verification groups of the NOAA Forecast
Systems Laboratory (FSL) and the National Center for Atmospheric Research Research
Applications Program (NCAR/RAP), rather than the responsibility of the individual agorithm
developers.

The study consisted of two major components: (i) a real-time component, in which the
algorithms were evaluated in near-real-time by FSL’s Real-Time Verification System (RTVS;
Mahoney et al. 1997), with results displayed on the World-Wide Web; and (ii) a post-analysis
component in which the verification data were re-generated and examined in detail at NCAR and
FSL. Thisreport summarizes the displays and analyses that were presented by RTV'S, including
upgrades to that system that were implemented as aresult of this project. Basic results from the
real-time evaluation also are presented. Results of the post-analysis are presented in some detail
and are compared to the real-time results. However, additional detailed analyses are ongoing and
will be reported in a manuscript to be completed during the next several months.

The report is organized as follows. The study approach is presented in Section 2. Section
3 briefly describes the algorithms that were included in the evaluation, and the data that were
utilized are discussed in Section 4. The verification methods are described in some detail in
Section 5. Results of the real-time study are presented in Section 6, with results from the post-
analysis presented in Section 7. Finally, Section 8 contains the conclusions and discussion.

2. Approach



A total of 14 CAT agorithms were included in the study.. The algorithms were applied to
datafrom the RUC-2 (Rapid Update Cycle, Version 2) model (Benjamin et al. 1998), with model
output obtained from the National Centers for Environmental Prediction. Model forecasts issued
at 1200, 1500, and 1800 UTC, with lead times of 3, 6, and 9 hours were included in the study. In
addition, turbulence AIRMETS, which are the operational turbulence forecasts issued by the
National Weather Service' s Aviation Weather Center (NWS/AWC) were included for
comparison purposes. Because of the emphasis placed on forecasting upper-level CAT, the
evaluation was limited to the region of the atmosphere above 20,000 ft.

The intercomparison was intended to begin on 1 December 1998 and continue through 1
March 1999. However, data problems prevented the study from beginning until 21 December
1998. Thus, the total possible number of forecasts was 909. However, smaller numbers of
forecasts were actually included in the analyses, due to some missing data and the need to make
the datasets consistent among all of the algorithms.

The algorithm forecasts and AIRMETs were verified using Yes and No PIREPs of
turbulence. In addition, vertical accelerometer (AVAR) observations which were systematically
recorded from observations provided by certain United Airlines aircraft, were used as an
indicator of No turbulence under certain conditions (to be described in Section 4). The algorithm
forecasts were transformed into Y es/No turbulence forecasts by determining if the algorithm
output at each model grid point exceeded or was |ess than a pre-specified threshold. A variety of
thresholds was utilized for each algorithm. The Y es/No forecasts were evaluated using standard
verification techniques available for Y es/No forecasts where observations are based on PIREPs.

3. Algorithms

The 14 CAT algorithms that were included in the evaluation are briefly described in this
section. Further information about the algorithms and their development can be found in the
references that are provided.

Burke-Thompson (BT3.0): This algorithm isthe Mellor-Y amada level-3.0 prognostic
turbulence index developed by Burke and Thompson (1989), which is explicitly included in the
RUC-2 model. Values are presented in units of turbulent kinetic energy.

Brown-1: Thisindex isasimplification of the Ri tendency equation originally derived by
Roach (1970). The simplificationsinvolve use of the thermal wind relation, the gradient wind as
an approximation to the horizontal wind, and finally some empiricism (Brown 1973).

CCAT: The CCAT (Clark's Clear Air Turbulence) index has been used on a semi-
operational basis by the US Navy's FNMOC for at least 2 decades. It was developed by Leo
Clark in consultation with Hans Panofsky, by applying aerodynamicist Theodore Theodorsen's
theory for the generation of vorticesto clear air turbulence. Thereisno direct documentation on
thisindex other than a definition and evaluation in an NRL verification study document (\V ogel
and Sampson 1996).



DTF3, 4, and 5: The DTF (“Diagnostic Turbulence Formulation”) algorithms were
developed to take into account several sources of turbulent kinetic energy in the atmosphere (e.g.,
upper fronts), with the output in terms of tke (Marroquin 1995, 1998). These algorithms are
related to one another, with the algorithm associated with each larger a gorithm number
incorporating more complexity.

Dutton: Thisindex is based on linear regression analyses of a pilot survey of turbulence
reports over the North Atlantic and NW Europe during 1976 and various synoptic scale
turbulence indices produced from the then-operational UK Met Office forecast model (Dutton
1980). Theresult of the analyses was the “best fit” of the turbulence reports to meteorological
outputs for a combination of horizontal and vertical wind shears.

Ellrod-2: Thisindex was derived from simplifications to the frontogenetic function. As
such it depends mainly on the magnitudes of the potential temperature gradient, deformation and
convergence (Ellrod and Knapp 1992).

ITFA: The ITFA (Integrated Turbulence Detection and Forecasting Algorithm )
forecasting technique uses fuzzy logic to integrate available turbulence observations (in the form
of PIREPs and AV AR data) together with a suite of turbulence diagnostic algorithms (a superset
of algorithms used in the verification exercise and others) to obtain the forecast (Sharman et al.
1999).

ITFA-S This algorithm was developed using a multivariate statistical modeling method,
based on fitting a multidimensional adaptive regression model, coupled with flexible
discriminant analysis. With this approach, the indices are combined statistically in an optimal
way to fit aset of observations, and the resulting model is used to forecast future events
(Sharman et a. 1999; Tebaldi et al. 1999). This approach is still in early stages of development
and the algorithm output was unavailable during much of the intercomparison period. Thus, itis
included in the RTV S analyses, but not in the post-analysis.

Richardson Number: Theory and observations have shown that at least in some situations
patches of CAT are produced by what is known as Kelvin-Helmholtz (KH) instabilities. This
occurs when the Richardson number (Ri), the ratio of the local static stability to the local shears,
becomes small. Therefore, theoretically, regions of small Ri should be favored regions of
turbulence (Drazin and Reid 1981; Dutton and Panofsky 1970; Kronebach 1964).

SCATR: Thisindex is based on attempts by several investigators to forecast turbulence by
using atime tendency (i.e., prognostic) equation for the Richardson number (Roach 1970). The
version used in this study was based on aformulation of this equation in isentropic coordinates
by John Keller, who dubbed the algorithm “SCATR” (Specific CAT Risk; Keller 1990).

Vertical wind shear: Wind shear is known to be a destabilizing force from the time of
Helmholtz. This can be seen from itsinverse relation to Richardson’s number: large values favor
small Ri, which in turn produce turbulence in stratified fluids (Drazin and Reid 1981; Dutton and
Panofsky 1970).



UlTurb: The UITurb (Upper-Level Turbulence) forecasting index was developed by Don
McCann at AWC (McCann 1997). It attempts to correlate unbalanced (i.e., nongeostrophic) flow
toregionsof CAT. Three different measures of thisimbalance are computed, and the maximum
of these measures relates to turbulence potential. The correlation between unbalanced flows and
turbulence is supported at least qualitatively from numerous field experiments, both over the
continental U.S. and the North Pacific (Knox 1997).

4. Data

Datathat were used in the study include model output, PIREPs, AVAR observations, and
lightning. These data were obtained and used in near-real-time by the RTV S, and they were
obtained and archived for use in post-analysis at NCAR.

Model output was obtained from the RUC-2 model, which is run operationally at
NOAA'’s National Centersfor Environmental Prediction, Environmental Modeling Center. This
model is the operational version of the Mesoscale Analysis and Prediction System (MAPS),
Version 2 model, developed at FSL (Benjamin et al. 1998). The model vertical coordinate system
isabased on a hybrid isentropic-sigma vertical coordinate, and the horizontal grid spacing is
approximately 40 km. The RUC-2 assimilates data from commercia aircraft, wind profilers,
rawinsondes and dropsondes, surface reporting stations, and numerous other data sources. The
model produces forecasts on an hourly basis; however, only forecasts issued at 1200, 1500, and
1800 UTC, with lead times of 3, 6, and 9 hours, were used in this study.

Algorithms were applied to the model output filesto create algorithm output files. This
part of the process was undertaken by the algorithm developers —the DTF and BT 3.0 algorithm
output files were computed at FSL, and all of the other algorithm output files were computed at
NCAR. As part of this process, the algorithm output data were interpolated to flight levels (i.e.,
every 1,000 ft) rather than the raw model levels.

All available Y es and No turbulence PIREPs were included in the study. These reports
include information about the severity of turbulence encountered, which was used to categorize
the reports. In particular, reports of moderate to extreme turbulence were included in the
“Moderate-or-Greater” (MOG) category. Information about turbulence type (e.g., “ Chop,”
"CAT”) frequently is missing, and was ignored. The aircraft type information in the PIREPs was
used to categorize the reports into heavy, not-heavy, and unknown weight classes (see Section
5.3). The heavy category was used for some analyses.

In addition to the PIREPS, vertical accelerometer (AVAR) data were obtained from
certain United Airlines aircraft, through the Aircraft Communications, Addressing, and
Reporting System (ACARS). These data are available every 10 minutes through the FSL Aircraft
Data Webh. The AVAR observations are a measure of the aircraft’s vertical acceleration, which
can be associated with either internal motions of the aircraft, or external forces such as
turbulence. Due to the effects of aircraft motions on the value of the vertical acceleration, the
AV AR dataonly can be used as an indicator of no turbulence. Thus, only AVAR observations



that were within 20% of the value of the acceleration of gravity (9.8 ms?) wereincluded as
observations of No turbulence.

Lightning data were obtained from the National Lightning Data Network (Orville 1991).
These data were used to identify PIREPs that were likely to be associated with convection (see
Section 5.3).

5. Methods

This section summarizes methods that were used to match forecasts and observations, as
well as the various verification statistics that were computed to evaluate the CAT forecasts.

5.1  Matching methods

RTV S and the NCAR verification systems use somewhat different methods to match the
forecasts and observations. These different approaches are described in greater detail in Sections
6 and 7. In general, both systems connect PIREPs to the nearest 8 grid points (four surrounding
grid points; two levels vertically). The RTV S uses bi-linear interpolation, whereas the RAP
system matches the PIREPs to the largest value among the gridpoints. AVAR observations were
interpolated/matched to model gridpoints using the same approach as for PIREPs.

Previous work at RAP concerning the appropriate time window for matching PIREPs to
the model valid time has indicated that the length of this time window (within reasonable
bounds) has little effect on overall results (e.g., verification over a month or season). However,
the day-to-day statistics become more variable when a smaller time window is used, dueto the
smaller number of PIREPs that are available. A recent study at FSL (Mahoney 1998) indicated
that +1 hour is an appropriate time length to allow fair representativeness of the model valid time
and to obtain an adequate number of PIREPs. Thus, thistime window was applied in these
analyses, both in real time and in post analysis. A time window of +1 hour around the model
valid time also was used to evaluate the AIRMETS, so that the AIRMET verification results are
comparable to the algorithm verification results.

5.2 Statistical verification methods

The verification methods selected for use in this study were based on standard
verification concepts. The rationale for use of these statistics was seriously considered by the
QAG, aswell as by the Turbulence PDT. In addition, the limitations on the interpretation of the
statistics due to characteristics of the verification data have been investigated and given very
serious consideration. The methods and statistics are described in general in this section. More
detail on the general concepts underlying verification of turbulence forecasts can be found in
Brown and Mahoney (1998).

Turbulence forecasts and observations are treated here as dichotomous (i.e., Yes/No)
values. In particular, AIRMETSs essentially are dichotomous, and the algorithm forecasts are



converted to a variety of Yes/No forecasts by application of various thresholds for the occurrence
of turbulence. Thus, verification methods described here generally are based on the two-by-two
contingency table (Table 1). In this table, the forecasts are represented by the rows, and the
observations are represented by the columns. The entriesin the table represent the joint
distribution of forecasts and observations.

Table 2 lists the verification statistics used in this evaluation. As shown in thistable,
PODy and PODn are the primary verification statistics based on the 2x2 verification table. It is
important to recognize that PODy and PODn are estimates of the conditional distributions that
underlie the joint distribution of forecasts and observations, or they are functions of these
distributions. For example, PODy is an estimate of the conditional probability of a'Y esforecast
given a Y es observation, p(f=Yes|x=Yes), where f represents the forecasts and x represents the
observations. It also will be noted that Table 2 does not include the False Alarm Ratio (FAR), a
statistic that is commonly computed from the 2x2 table. As described in Brown et a. (1997) and
applied in previous turbulence verification studies (e.g., Brown and Bruintjes 1995; Brown
1997), it is not possible to compute FAR using only PIREPs (or PIREPs and AVARS). This
conclusion also appliesto other statistics, such asthe Critical Success Index and Bias, and is
documented further in Appendix A. Furthermore, other verification statistics based on PIREPs
(i.e., PODy and PODn) should not be interpreted in an absolute sense, but can beused in a
comparative sense, for comparisons between agorithms and forecasts. Moreover, PODy and
PODnN should not be interpreted as probabilities, but rather as proportions of PIREPs that are
correctly forecast.

Together, PODy and PODn measure the ability of the forecasts to discriminate between
Y es and No turbulence observations. This discrimination ability is summarized by the True Skill
Statistic (TSS), which frequently is called the Hanssen-Kuipers discrimination statistic (Wilks
1995). Note that it is possible to obtain the same value of TSS for a variety of combinations of
PODy and PODn. Thus, it alwaysis important to consider PODy and PODn, aswell as TSS.
PODn is computed in two ways in this study — (i) using the negative PIREP observations and (ii)
using the negative AVAR observations.

The relationship between PODy and 1-PODn for different algorithm thresholds is the
basis for the verification approach known as “ Signal Detection Theory” (SDT). This relationship
can be represented for a given agorithm by the curve joining the (1-PODn, PODy) points for
different algorithm thresholds. The resulting curve is known as the “Recelver Operating
Characteristics’ (ROC) curvein SDT. The area under this curve is a measure of overall forecast
skill (e.g., Mason 1982), and provides another measure that can be compared among the
algorithms. These area values were computed only in the post-analysis.

Asshown in Table 2, two other variables are utilized for verification of the turbulence
forecasts. Impacted Area and Impacted Volume. Impacted Area measures the horizontal extent of
the forecast Yesregion (i.e., based on projecting the Yes forecasts at al levels to the surface);
Impacted V olume measures the Y es forecast extent in three dimensions by summing al grid
volumes with a 'Y es forecast.



Impacted Volume s particularly useful for evaluation of the turbulence algorithms. In
particular, since AWC forecast methods require * cake-shaped” forecast volumes, a major
improvement could be attained and demonstrated by the model-based algorithms through
improved vertical representations. That is, while the model-based al gorithms may not
demonstrate decreases in Impacted Areain comparison to AIRMETS, they should demonstrate
decreasesin Impacted Volume. Impacted Areaaso is less meaningful than Impacted Volume,
since forecasts of turbulence with little vertical extent contribute as much to Impacted Area as
forecasts of turbulence in thick layers. In general, Impacted Area and Impacted Volume are
expressed as % Area and % Volume, by dividing the Impacted Area/\V olume by the maximum
Area/Volume possible, and multiplying by 100. The total possible area, in this case (limiting
coverage to the area of the continental United States that can be included in AIRMETS) is9.5
million km?. Because the analyses are limited to 20,000 ft and above, the total possible volume is
about 64 million km®.

Impacted Area and Volume also can be combined with PODy to compute Area and
Volume Efficiency values,

Area Efficiency = (PODy / % Area) x 100
and

Volume Efficiency = (PODy / % Volume) x 100.

These two statistics represent the % PODy per unit % Area and unit % Volume, respectively.
While they are useful statistics for comparing algorithms, they also cannot be used aone. In
particular, it is easy to obtain alarge efficiency value when the Impacted Area/\VVolumeis small,
even if PODy isaso very small. An appropriate use of these statisticsis to compare the
efficiencies of forecasting systems with nearly equivalent values of PODy (e.g., see Brown et al.
1999).

Emphasis will be placed on PODy, PODn, and % Volume. Use of this combination of
statistics implies that the underlying goal of the algorithm development is to include most Y es
PIREPs in the forecast “Y es turbulence” region, and most No PIREPs in the forecast “No
turbulence” region (i.e., to increase PODy and PODn), while minimizing the extent of the fore-
cast region, as represented by % Volume. Volume Efficiency also should be computed to com-
pare agorithms with ssimilar PODy and PODn values.

53 Stratifications

The verification results are stratified and limited using a variety of criteria. First, all of the
evaluations are limited to PIREPs and algorithm output above 20,000 ft. Two categories of
reported severity are considered: (i) reports of any turbulence severity (light and greater) and (ii)
reports of MOG severity.



The positive turbulence PIREPs also were subdivided into aircraft weight classes (large
and small) when possible, using atable of aircraft characteristics that was previously prepared by
the PDT. This categorization was done in an attempt to minimize the impact of aircraft
differences on the results. In particular, if the aircraft associated with a PIREP was determined to
weigh in excess of 60,000 Ib, the PIREP was categorized as “Heavy.” Only PIREPs associated
with heavy aircraft that could be assigned a weight using this table were included in the analysis
associated with Heavy PIREPs. Thus, alarge number of PIREPs were ignored by the Heavy
stratification because the weight information was unavailable.

Finally, the positive turbulence PIREPs were subdivided to eliminate reports that may
have been located in convective regions. This stratification was based on the locations of
lightning observations, utilizing lightning data from the Nationa Lightning Data Network
(Orville 1991). If aPIREP was located within a 20-km radius of an area where there had been at
least 4 lightning strikes during the previous 20 minutes, the observation was assigned a
convective flag and was used only when statistics were generated for “All” PIREPSs.

These stratifications are used individually and in combination. Analyses reported here
primarily emphasize the |east and most restrictive categories. That is, we consider (i) the “All”
category, in which all aircraft types were included and the lightning filter was not applied; and
(i) the “Heavy, Non-Convective” (HNC) category, in which only heavy aircraft were included
and the lightning filter was applied. In both cases, PODy values were computed for both
categories of severity — All and MOG.

6. Real-timeverification

Real-time verification was provided for this intercomparison exercise to accomplish the
following goals: (i) to provide near real-time statistical feedback to the algorithm developers,
AWC forecasters, and other users through an interactive Web-based graphical user interface; (ii)
to test the verification methods, evaluate whether realistic agorithm thresholds were applied to
the algorithm output, and gather feedback on statistical displays so that adjustments could be
made prior to the post analysis; and (iii) to generate statistics using only the forecasts and
observations available in near real-time, much like the activities within an operational forecasting
environment.

6.1 M echanics

The real-time verification was provided by the RTVS (Mahoney et al., 1997). The system,
developed by FSL and funded by the FAA, was enhanced to ingest the 14 turbulence algorithms,
to include statistics based on the AVAR observations, and to provide additional statistical
displays and data stratifications.

M odel-based forecasts of turbulence, hourly turbulence observations from voice PIREPS,
and automated AV AR reports were provided to RTV S through FSL's NIMBUS (Networked
Information Management client-Based User System; Wahl et al. 1997). Scheduled processes
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were established within RTV Sto access IDL (Interactive Data Language) routines for reading,
writing, and stratifying data, bi-linearly interpolating algorithm output to observations locations,
and generating statistical results. These processes ran continuously from 21 December 1998 - 31
March 1999. The algorithm thresholds used in the real-time verification are shown in Table 3.
These thresholds were selected as an initial attempt to cover the range of possible forecasts.

RTV S processed forecasts and observations that were available to the system at specified
time periods. If datawere missing or were late getting to the system, and/or the system
processing or data transmission failed, results were not generated for that specific time period in
near-real-time. However, after the evaluation was compl eted, attempts were made to fill in
missing time periods and re-analyze the data. Three algorithms, ITFS_S, SCATR, and BT3.0,
had limited output during the evaluation. However, these algorithms are included in the real -
time portion of the analysis, since they were available to users during some periods of the
evaluation.

In RTVS, the model output is connected to the PIREP and AV AR observations using the
following process. First, the model-based output, available on the RUC-2 hybrid B coordinate
system, is bi-linearly interpolated to flight levels to match the vertical resolution of the
observations. Second, the four grid points surrounding the observation are interpolated
horizontally to the observation location (e.g. PIREPs or AVARS), producing a
forecast/observation pair as described in Section 5. If one of the grid pointsis missing or
contains bad data, the forecast/observation pair is excluded from the statistical computations. A
+1-hr time window around the model valid timeis used to connect both the PIREP and AVAR
observations to the forecasts.

A Web-based graphical user interface (http://www-ad.fsl.noaa.gov/afralrtvs/ RTV S-|
project_des.html) was devel oped that provided the ability for model developers, PDT members,
and AWC forecasters to examine the results during and after the evaluation. An example of the
interfaceisshownin Fig. 1. Usersare ableto select a particular statistic, issue/lead time, and
observation type from the interface. Once the user submits the request, a GIF image is displayed
on their screen.

Web-based displays of the statistical results were presented through time and height
series plots, aswell as on scatter plots and contingency tables. The plots were generated for each
of the individual algorithms, issue and lead times, statistical measures, algorithm thresholds, and
observation types. Plotswere produced daily and for the overall evaluation period. For example,
time and height series and scatter plots for the Ellrod Index are shown in Figs. 2and 3. The
PODy and PODn values, as shown in Fig. 2, were computed, in this case, for the non-convective
PIREP observations for an issue time of 15 UTC with a 3-hr lead time. Each line on the time
series plot represents one of the four algorithm thresholds. Immediately, a large day-to-day
variability is apparent in the time series plot. In trying to understand this variability, the daily
numbers shown Fig. 2, were compared to those generated for the post-analysis. This comparison
revealed some large differences between the daily statistical results generated by RTV S and the
post-analysis, which indicated the important effect that the small numbers of PIREPs have on
day-to-day statistical reliability. In addition, some differences apparently were associated with
the methods used to match PIREP/AV AR observations to model output. (These differences are
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considered more closely in Section 7). This large day-to-day variability suggests that alternative
methods, such as computing a running 7-day mean, are should be used for future evaluations
(including on-going post-analyses). These findings extend to the values shown in the scatter
plots, aswell.

An example of the height series plotsincluded on the RTV S web site d'so is shown in
Fig. 2. The height series plots are generated using all available forecast/observation pairs
computed during the evaluation; thus they contain sufficiently large sample sizes to produce
reliable statistical results. For these plots, the statistical measures are computed from
forecast/observation pairs accumulated at each 5,000 ft level and above 20,000 ft.

6.2 Overall results

Dueto the large variations in the daily statistics, only overal results (for the entire
experimental period) from RTV S are presented here. These results were re-generated following
the experimental period using all available data. Results are presented for one PIREP category:
Heavy, Non-convective (HNC) PIREPs, reporting moderate-or-greater (MOG) severity.
Numerous displays not shown here are available on the Web at http://www-
ad.fd.noaa.gov/afralrtvs/RTV S-project_des.html.

6.2.1 General comparisons

The overall character of the statistical resultsis represented in Figs. 4-8 for the Heavy
MOG NCPIREP-based verification for 15 UTC issue time with a 6-hr lead time covering the
period from 21 December 1998 - 31 March 1999. Figs. 4-8 show the relationship between PODy
and % Volume [panels (a) and (b)] and PODn and % Volume [panels (c) and (d)]. Each point on
the sets of algorithm line-segments represents a particular threshold used to create the Y es/No
forecasts, with the AIRMETSs represented by a single point. During the real-time evaluation, the
number of thresholds assigned to each algorithm was limited to four, due to the significant
processing power required to evaluate additional thresholds. However, statistics were computed
using additional algorithm thresholds in the post-analysis, resulting in a more complete curve as
apposed to line segments. The thresholds were chosen to represent a range of turbulence
forecasted over the specified domain, where alow threshold may produce turbulence forecasts
covering the entire domain, while higher values of the threshold limit turbulence to specific well-
defined regions. For example, the Ellrod Index with a threshold of 1x10° (located in the upper-
right-hand corner of Fig. 4a) produces turbulence over the entire domain, with the % Volume
reaching 100%, resulting in a prefect PODy. Asnoted earlier, the ultimate goal for improved
forecasting performance is to maintain a reasonable % V olume while improving the PODy and
PODn statistics.

Initial examination of the overall resultsin Fig. 4, suggests that differencesin
performance between algorithms seem small, if at all noticeable. Thisimpression is provided by
the cluster of linesin Fig. 4 connecting the statistical values generated at each algorithm
threshold. However, further investigation shows that for a specific volume, thereis
approximately a 20-30% difference in the PODy value and a 10-50% difference in PODn
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(depending on the % Volume) between some of the algorithms. For instance, with an average

volume of 20% (the % Volume for the AIRMETS), the PODy (PODn) values range among the
agorithms from 0.21 to 0.50 (0.70 to 0.83), suggesting that some algorithms are more efficient
than others at capturing turbulence conditions.

Subtle differences are apparent between the various algorithms, as shown in Fig. 4. For
instance, the algorithms with the highest overall PODy include the Ellrod Index, ITFA, DTF3,
DTF4, DTF5, and Dutton. The Richarson Number, SCATR, BT3.0, and ITFA_S have the lowest
PODy values. Shear, Brown, and CCAT are somewhere in the middle. The best PODn values
are represented by the Richardson Number and DTF3, DTF4, DTF5, Ellrod Index, and ITFA.
The algorithms with the worst PODn include SCATR and ITFA_S; however, these two
algorithms were not functioning correctly for several weeks at the beginning of the evaluation
period. The character of the results for ULTURB is different from the others. In particular, the
PODy value for ULTURB is smaller than the PODy for all other algorithm until a % V olume of
40% is reached, at which time the PODy improves. Similarly, the PODn value for ULTURB is
better than all other algorithms until a% Volume of 40% is reached, at which timeit drops
dramatically. Thisresult may be due to acombination of the manner in which the turbulenceis
produced by that algorithm and the interpolation scheme used by RTV S (see the post-analysis
results for further detail). Nevertheless, the best algorithms in terms of PODy, PODn, and %
Volume for the HNC, MOG PIREPs appear to be the Ellrod Index, ITFA, and DTF3 (with other
algorithms, such as DTF4, DTF5, and Dutton following closely behind). Further analysisand a
detailed description of algorithm performance are presented in Section 7.

The PODy value for the AIRMET resultsis nearly 8% larger than for the algorithms, for
agorithm thresholds leading to a % Volume of 20%. These comparisons between the verification
results for the AIRMETSs and the model-based turbulence algorithms suggest that the
fundamental differences between these forms of forecasts must be taken into account. For
instance, forecasters who issue AIRMETSs have a number of different types of supplementary
information sources available to them to aid in formulating their forecasts (e.g. satellite data,
current PIREPs). These types of information are not taken into account by the automated
turbulence algorithms. In fact, the AWC forecasters were able to use forecasts from any of the
14 turbulence algorithms during the algorithm intercomparison exercise as guidance.

6.2.2 Variationswith lead and issue time

Figures 4-6 illustrate the variations in PODy, PODn, and % Volume for the 3, 6, and 9 hr
lead times, for forecastsissued at 1500 UTC. Important variations with lead time are difficult to
identify by inspecting the individual plots. However, the algorithmsin Figs. 4-6 on panel (a)
tend to cluster together as the lead time increases while those in panel (b) spread apart,
suggesting that some agorithms may be more susceptible to a change in PODy and % Volume
with an increase in forecast lead time. On the other hand, the PODn and % V olume for
ULTURB, Richardson Number, and SCATR change more dramatically with lead time than any
of the other 11 algorithms.
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Results for the Ellrod Index are shown as a specific example. For this agorithm, as the
lead time increases from 3 to 6 hr, the PODy value at athreshold of 4x10™ decreases from 0.59
to 0.51, with an increase in PODn from 0.67 to 0.73; at the 6x10™’ threshold, PODy decreases
from 0.47 to 0.31 as the PODn again increases from 0.84 to 0.91. Asthe lead-time increases
another 3 hr, the PODy values for the 4x10” and 6x10 thresholds decrease to 0.50 and 0.35,
respectively, as the PODn values change to 0.83 and 0.89. The % Volume value in these
examples stays nearly the same for the 3-, 6-, and 9-hr lead times. These results possibly indicate
that the models tend to advect areas of turbulence, but may not necessarily have the turbulencein
the correct location. Variations with lead time are considered further in Section 7, with the post-
analysis results.

Differencesin statistical resultsfor the 12, 15 and 18 UTC issue timeswith a6 hr lead
time are illustrated by comparing Figs. 4, 7, and 8. Overall, the apparent variations with issue
time are small, asindicated by the similarities between panels (a) — (d) among the figures. For
instance, the PODy value for the Ellrod Index at threshold 4x10°" decreases from 0.57 to 0.51
from the 1200 UTC (Fig. 7) to 1500 UTC (Fig. 4) issue time, as the PODn increases.
Interestingly, however, the PODy value increases from 0.51 to 0.55 from the 1500 UTC (Fig. 4)
to the 1800 UTC (Fig. 8) issue time. The PODn remains generally the same over the period.
Only glight changesin % V olume are observed.

6.2.3 Variationswith height

Height series plots of PODy and PODn above 20,000 ft for the 6-hr forecasts issued at
1500 UTC, with verification based on the MOG HNC PIREPs are shown in Figs. 9 and 10. The
data chosen for display on these plots were filtered to select the algorithm thresholds with the
maximum TSS value, since the TSS combines both PODy and PODn. The variationsin PODy
(Fig. 9) and PODn (Fig. 10) with height are small, with only a slight increase above 35,000 ft.
However, the variability in PODy among the algorithmsis larger than the variability in PODn. In
fact, PODn values for nearly al algorithms are greater than 0.80, while the PODy values are
generally less than 0.50, with some exceptions. The algorithms with the largest PODy values,
including the Richardson number, ULTURB, and SCATR, aso are those with the worst values
of PODn. These results suggest that variations in the statistics with altitude are small, and that
the algorithm forecasts generally capture the "No" turbulence events better than they capture the
"Yes' turbulence events.

A specific example of the variations in PODy and PODn with height is shown for the
Ellrod Index in Fig. 11. The data are for MOG HNC PIREPs for the 1500 UTC 6-hr forecasts.
Each line on the plot represents one of the four thresholds. Some improvementsin PODy are
evident between the 30,000 - 35,000 ft level and the 35,000 - 40,000 ft level for al thresholds.
Correspondingly, the value of PODn decreases between these levels.

6.3  Issuesand conclusions
Verification statistics were generated in near-real-time by RTV S and were provided to

anyone interested through statistical displays on the Web. Specifically, this process provided near
real-time feedback (i) to model developers so that thresholds and techniques in the models could
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be identified and adjusted; (ii) to forecasters so that information on algorithm quality could be
used during the forecasting process; and (iii) to those evaluating the algorithms so that
information could be easily shared and compared. In addition, several important issues were
discovered through the evaluation process. These included: (i) inability to compute daily values
of the verification statistics due to the statistical instability resulting from the low number of
PIREPs available on the daily time scale; (ii) variations in statistical values between RTV S and
the post-analysis in response to differing interpolation methods; and (iii) missing data due to
system processing failures and data transmission problems.

Overadl, the results indicated a clear trade-off between PODy, PODn and % V olume with
variations in algorithm thresholds, as shown in Figs. 4-8. The quality of the forecasts changed
only slightly with changesin forecast lead time. Finally, height series results (for algorithm
thresholds selected to maximize the TSS) indicated alarge amount of variability in PODy among
the 14 algorithms. However, the mgjority of the algorithms had values of PODn clustered above
0.80 in these diagrams. This result suggests that the algorithms may be able to capture areas with
no turbulence better than they can capture areas with turbulence.

7. Post-analysis

This section describes initial results of the verification analyses that have been undertaken
at NCAR following the real-time component of the intercomparison study. This effort, which is
still ongoing, has included numerous steps. These steps include cataloging available data and
making efforts to fill in the missing pieces, selecting additional algorithm thresholds to provide a
more complete picture of algorithm performance, implementing some additional statistical
methods, and re-evaluating the algorithm output using the additional data and techniques. In
addition, the efficiency of the NCAR verification software was enhanced, to make it possible to
run multiple analyses of the datain areasonable amount of time. The process of filling in
missing data (especially algorithm output) is still ongoing. Thus, results presented here may
change dlightly as additional forecasts are added to the archive in the future. The verification
analyses were limited to dates and times when algorithm output was available for all agorithms,
so all results would be comparable. A total of 175 3-hr forecasts, 167 6-hr forecasts, and 160 9-hr
forecasts were included.

Two of the algorithms that were included in the real-time verification analysis either have
not been included in the post-analysis, or were included to aminimal extent. In particular, the
ITFA-S agorithm had very limited output during the real-time portion of the study, and it has not
been possible thus far to create the missing files (however, we hope that the output will be
available for ongoing analyses sometime in the future). Hence, results for ITFA-S are not
considered here. In addition, results for BT3.0 were limited because we have been unable to
identify thresholds that are small enough to detect more than a very small fraction of the
turbulence PIREPs. Thus, results for BT 3.0 are included in some of the figures, but not in the
detailed analyses. BT3.0 output will be examined further in an effort to obtain more complete
results.
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The mechanics of the verification analyses applied in the NCAR verification system are
somewhat different than the methods used in RTV S. These methods are described in Section 7.1,
and some effects of the differences are considered in Section 7.2.1 and in Appendix B. Some
results of the post-analyses are presented in Section 7.2.

71 M echanics

The NCAR verification system uses a matching approach to connect algorithm output to
PIREPS. With this method, a PIREP is first matched to all of the model levels (i.e., flight levels)
in the range of atitudes reported in the PIREP. Then, at each level, the four surrounding model
grid points are compared to the PIREP. If any one of the four grid points has a Y es forecast, then
aYesforecast is assigned to the PIREP. If none of the four grid points hasa esforecast, then a
No forecast is assigned to the PIREP. The same procedure is applied to the AVAR observations.
Essentially, this approach amounts to using the largest value pf the algorithm output at the four
surrounding grid points as the forecast assigned to the PIREP".

To mimic this system, the AIRMETs also are treated somewhat differently by the NCAR
verification system than by RTVS. In particular, the RUC-2 grid is overlaid on the AIRMETs and
PIREPs. If any of the four RUC-2 grid points surrounding a PIREP isinside an AIRMET, then
the PIREP isassigned aYes AIRMET forecast; if none of the grid points are inside an AIRMET,
then the PIREP is assigned aNo AIRMET forecast.

Additional thresholds were included in the analyses for all algorithms. These thresholds
were selected by examining the real-time results (e.g., Figs. 5-8) to identify regions where there
was alarge jump in PODy and/or PODn between the original thresholds. Additional thresholds
also were added after examining some of theinitial post-analysis results. Table 4 shows the
algorithm thresholds that were used in most of the post-analyses. Note that some additional
thresholds were used for some of the results presented in the tables.

7.2 Results

Overal results are presented here for two categories of PIREPSs: (i) All reports and (ii)
HNC reports. Results also are broken down by lead time. The analyses were limited to only
include forecasts when data were available from all agorithms, and when AIRMETS, PIREPs,
AV AR observations, and lightning data also were available.

7.2.1 Overall resultsfor All PIREPs

Overdl resultsfor All PIREPs are shown in Figs. 12-14, for lead times of 3, 6, and 9
hours, respectively. A total of 175 3-hr, 167 6-hr, and 160 9-hr forecasts were included. The plots
in Figs. 12-14 were created by combining the counts for all issue times together for each lead
time. The figuresinclude plots of PODy (MOG PIREPS) versus % Area, % Volume, and 1-

* Note that in the case of Richardson number, the minimum value is assigned.
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PODN. Because % Areais not one of the primary verification measures of interest, plots showing
this statistic are only included in Fig. 12. Asin Figs. 5-8, the individual points on the algorithm
curves represent the various threshol ds used to create Y es/No forecasts. Better forecasts are
located closer the upper lefthand corner of the diagrams. Two groups of agorithms are shown for
each combination of statistics, in order to make the diagrams more clear. Group A includes
Brown-1, ULTURB, DTF3, DTF4, DTF5, ITFA, and Ellrod-2, while Group B includes CCAT,
Dutton, Richardson number, BTF3.0, and Shear. Each plot also includes a point representing the
AIRMETSs. In al cases, it isdesirable for the curves and points to be as close to the upper
lefthand corner of the diagram as possible.

The first impression from Figs. 12-14 isthat, in general, the forecasting performanceis
very similar among the algorithms. However, some differences are apparent even in these
crowded plots. Some of these differences demonstrate the importance of examining a variety of
verification measures.

The plots of PODy vs. % Areain Fig. 12 suggest that, as expected, the algorithm areas
are larger than those attained by the AIRMETS. This result most likely is due to the thin model
layers that together can contribute substantially to the areaimpacted by the whole forecast. The
plotin Fig. 12b aso indicates that the relationship between PODy and % Areafor SCATR s
quite different from the relationships for the other algorithms. This result, along with other
SCATR results, suggests that SCATR may not have been functioning correctly during the
intercomparison (note that SCATR datafor the period prior to 21 January, when there were
known errors in SCATR, have been removed from the dataset).

The plots of PODy vs. % Volumein Fig. 12 suggest that all of the algorithms perform
about the same with respect to this combination of variables, except for ULTURB and SCATR.
In particular, ULTURB appears to capture alarger proportion of Y es PIREPs with a smaller
forecast volume than the other algorithms, while SCATR performs more poorly than the other
agorithmsin thisregard. Thisresult for ULTURB is somewhat different than the results
obtained by RTVS. For example, Fig. 4 suggests that ULTURB has similar PODy values to the
other algorithms, at least for moderate % V olume values. For larger % Volume, however, RTVS
also suggests that ULTURB has alarger value of PODy than the other algorithms. This
difference between the performance of ULTURB and the performance of the other algorithms
appears to be associated with the fact that ULTURB generally forecasts a large number of very
small, distinct, areas of turbulence (many as small as asingle grid point) rather than forecasting
the more continuous region of turbulence that istypical of the other algorithms. Differences
between the RTV S and post-analysis results are primarily due to differences in the methods used
to match the forecasts to the PIREPs (see Appendix B).

Plots of PODy vs. 1-PODn, shown in Figs. 12e and 12f, suggest very different results for
ULTURSB than the % Volume plots. In fact, with respect to this combination of statistics,
ULTURB performs more poorly than the other Group A algorithms. This result suggests the
importance of examining more than one statistic when considering the quality of aforecast or
algorithm. It also suggests that the % Volume statistic by itself can be misleading, particularly if
aforecast is highly discontinuous.
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For both the comparisons of PODy with % Volume and with 1-PODn (Figs. 12¢-12f),
AIRMETSs can be used as a separator for the algorithm curves. Curves that approximately cross
or liejust below the AIRMET point in Fig. 12c include ULTURB, Ellrod-2, and ITFA. For the
PODy vs. 1-PODn plot, the same curves approximately cross the AIRMET point, except for
ULTURB, which lieswell below the point. All of the Group B algorithm curves lie below the
AIRMET point, in both comparisons (Figs. 12d and 12f).

The 3-hr results can be examined in greater depth by selecting appropriate, comparable
thresholds for each algorithm and comparing the individual statistics among the algorithms. One
rationale for this processis to select thresholds that |ead to a PODy value that is approximately
the same as the value attained by the AIRMETSs. Table 5 shows the results of this exercise for the
3-hr forecasts, based on All PIREPs. This table includes a variety of statistics associated with the
specified thresholds. It also includes an estimate of the area under the curve relating PODy
(MOG PIREPS) to 1-PODn (i.e., the ROC curves) for each algorithm, which provides an overall
measure of the quality of the forecasts provided by that algorithm. Note that this statistic is not
included for the AIRMETSs since only one point is associated with the AIRMETS, whereas many
points are associated with the algorithms; the area estimate for the AIRMETs would be smaller
than the estimates for the algorithms, simply due to the difference in number of points.

Two values of PODy areincluded in Table 5 —one for All severities and one for MOG
severities. In amost al cases, PODy (MOG) is dlightly larger than PODy (All), which suggests
that the MOG PIREPs are somewhat easier to capture than are PIREPs associated with less
severe conditions. Two values of PODn also are included in Table 5 — one based on negative
PIREPs, and the other based on AVAR data. Surprisingly, these two values of PODn are nearly
the same, even though the sources of the data are so different. For some algorithms, the value of
PODn for the PIREPs is dlightly larger, and in other cases the value for the AVARS datais
dightly larger. However, the differences are always quite small. The PODn values do, however,
vary among the algorithms, with the largest values achieved by the AIRMETS, DTF3, DTF4,
Ellrod-2, ITFA, and Richardson number.

The True Skill Statistic (TSS) values also are similar, regardless of the type of data used
to compute PODn. Among the different forecasts and algorithms, the largest values are achieved
by the AIRMETS, DTF3, Ellrod-2, and ITFA. With regard to the ROC curve area, the best
algorithm results are attained by DTF3, Ellrod-2, ITFA, and Richardson number.

Interms of % Volume and Volume Efficiency, as expected from Fig. 12, the best
performance is achieved by ULTURB. Other forecasts and algorithms with relatively good
performancein this regard are the AIRMETS, Ellrod-2, and ITFA. The Richardson number has a
relatively large % Volume value, and hence, arelatively small Volume Efficiency.

Thus, the resultsin Table 5 suggest that there are some discernible differencesin the
results among the algorithms, with the apparently best, all-around, algorithm performance
associated with Ellrod-2, ITFA, and DTF3. Of course, the statistical significance of the
differences between the algorithms have not been tested, but many of the differences are unlikely
to be statistically significant.
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7.2.2 Comparisons among lead and valid times

The algorithm curves for the 6- and 9-hr lead times (Figs. 13 and 14) are qualitatively
similar to the 3-hr resultsin Fig. 12, although the quality of the forecasts does seem to degrade
some by the 9-hr lead time. In particular, al of the curvesin Figs. 14c and d lie below the
AIRMET point, whereas several comparable curves lie above the AIRMET point in Fig. 12.

Tables 6 and 7 were created in the same way as Table 5, except they are for the 6- and 9-
hr forecasts. In particular, these tables include verification statistics for algorithm thresholds for
which PODy (MOG PIREPS) is approximately equal to the PODy for the AIRMETS. The results
in Table 6 (6-hr forecasts) are nearly the same as the resultsin Table 5 (3-hr forecasts). In fact, in
some cases the 6-hr statistics are somewhat better than the 3-hr results. For example, the Curve
Area and Volume Efficiency both are somewhat larger for the 6-hr forecasts than for the 3-hr
forecasts, for most algorithms. Comparing the thresholds in Table 6 to those in Table 5 indicates
that only the threshold selected for CCAT changed between the two lead times — for all other
algorithms, the same thresholds were used for both lead times.

In contrast to the 6-hr statistics, results for the 9-hr forecasts (Table 7) are quite different
from the results for the other two lead times. In particular, (i) anong all of the algorithms, only
DTF3 maintains relatively large PODn and TSS values; (ii) the Curve Area statistics are
somewhat smaller for all of the agorithms; and (iii) the VVolume Efficiency values are somewhat
smaller for most agorithms. For the 9-hr forecasts, the Curve Area statistics are best for DTF3,
Ellrod-2, ITFA, and Richardson number, whereas the best Volume Efficiency values are
achieved by Ellrod-2, ITFA, and ULTURB. It isinteresting to note that the thresholds used in
Table 7 are different from those in Table 6, for most algorithms (with the exception of Brown-1,
CCAT, SCATR, Shear, and ULTURB). Thus, it appears that are-calibration of the algorithms
may occur with increasing lead time.

The 6-hr results are somewhat puzzling. In particular, comparisons of Tables5 and 6
indicate that the algorithms’ forecasting capability does not degrade with lead time, at least not
between 3 and 6 hr. Because these forecasts were aggregated across issue times, it is possible that
thisresult is due to confounding of issue/valid time effects with the lead time effects. This
possibility isinvestigated further, later in this section.

Variations of the statistics with lead time are considered directly for three algorithms
(DTF3, Ellrod-2, and ITFA) in Fig. 15. This figure shows the curves relating PODy to 1-PODn
and % Volume for these algorithms, with separate curves on each plot for the three lead times.
The curvesin Fig. 15 indicate that the relationship between PODy and % V olume changes very
little (or not at all) among the three lead times, for all three algorithms. However, the points are
not coincident, which suggests are-calibration between lead times. For Ellrod-2 and ITFA, small
differences are noticeable among the curves relating PODy to 1-PODn, and these differences are
consistent with the differences noted among Tables 5-7, with larger differences apparent for
Ellrod-2 than for ITFA, and the 6-hr lead time curves appearing to be somewhat better than the
curves for the 3- and 9-hr lead times. Differences among the PODy vs. 1-PODn curves for DTF3
are very smal..
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Asnoted earlier, the resultsin Tables5-7 and Figs. 15b, d, and f suggest are-calibration
of the algorithms may occur with increasing lead time. Variations of the statistics with lead time
are considered further in Table 8 using the thresholds applied in Table 5 (i.e., the thresholds that
were appropriate for 3-hr forecasts). Results for three algorithms (DTF3, Ellrod-2, and ITFA) are
included in Table 8. As shown in this table, the PODy values tend to decrease somewhat with
lead time, with the decrease from 3 to 6 hr smaller than the decrease from 6 to 9 hr.
Correspondingly, the PODn values tend to increase somewhat as lead time increases. The
resulting effect on TSSis to increase or maintain the value of this statistic between the 3- and 6-
hr lead times, and to decrease the value between the 6- and 9-hr lead times. Similarly, the ROC
curve areaincreases slightly between the 3- and 6-hr lead times, and decreases slightly between
the 6- and 9-hr forecasts. The values of % Areaand % Volumein Table 8 actually decrease
noticeably as lead time increases. In fact, this effect is strong enough to compensate for the
decreases in PODy, so that the Volume Efficiency values are dightly larger for the 9-hr forecasts
than for the 3-hr forecasts. Comparing the results in Table 8 to those in Fig. 15 suggests the value
in examining the results for a variety of thresholds, asin the ROC diagram; results for asingle
threshold would be misleading.

These results are somewhat different from the lead time results obtained from RTVS
(Section 6.2.2). However, as noted earlier, these results also may be confounded with the effects
of forecast valid time. In particular, the longer-lead time forecasts, overall, have later valid times
than the shorter-lead time forecasts. To take into account the effects of issue/valid time, Fig. 16
shows verification curves for 3-, 6-, and 9-hr DTF3, Ellrod-2, and ITFA forecasts, al valid at
2100 UTC. Note that, although these plots take into account the effect of valid time, possible
issue time effects are not considered. Results in Fig. 16 suggest the differences among lead times
are relatively small; however, in the ROC diagrams (Figs. 16a, c, €), there is a suggestion that the
3-hr forecasts have somewhat poorer performance than the 6- and 9-hr forecasts. Thisresult, as
mentioned before, is somewhat counter-intuitive, but is relatively small. The PODy vs. %
Volume curves (Figs. 16b, d, f) are very similar for the three lead times.

Figure 17 concerns differences in the verification statistics among issue times. In
particular, the curvesin Fig. 17 show verification results for three agorithms (DTF3, Ellrod-2,
and ITFA), for 6-hr forecasts issued at 1200, 1500, and 1800 UTC. These results suggest that in
some cases (particularly for Ellrod-2), the verification statistics for CAT forecasts issued at 1200
are dightly better than the statistics for forecasts issued at the other lead times.

7.2.3 Comparisons between PIREP groups

Results thus far have only considered the All PIREP category. In this section, the results
for All PIREPs are compared to the results for the HNC PIREPs. Particular attention is given to
the 3-hr forecasts. The HNC restriction on the PIREPs, for the 3-hr lead time, resulted in a 56%
decrease in the number of MOG PIREP data points (from 3,092 to 1,375).

Figures 18-20 show the algorithm performance curves based on the HNC PIREPS, for 3-,
6-, and 9-hr lead times, respectively. These plots have the same form as the plotsin Figs. 12-14.
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Comparison of the two sets of plots suggests that is difficult to distinguish differences between
the results associated with the two sets of PIREPS.

The All-PIREP and HNC-PIREP results for three algorithms (again, DTF3, Ellrod-2, and
ITFA) are compared more clearly in Figs. 21 and 22, for 3- and 6-hr lead times, respectively. As
shown in these figures, the verification curves do not vary greatly in response to the different sets
of PIREPs. The curvesfor 3-hr ITFA forecasts exhibit the largest differences in results between
the two groups, with the results for the HNC PIREPs dlightly better than the results for All
PIREPs. For DTF3 and Ellrod-2, and for the 6-hr ITFA forecasts, the two curves are nearly
coincident. Note that the 1-PODn values do not change between the two groupings of PIREPs
because the No PIREPs are not affected by this stratification. Figs. 21 and 22 also include results
for the AIRMETSs for the two sets of PIREPs. These AIRMET points suggest that use of the HNC
PIREPs resultsin only avery small change in PODy for these forecasts.

Results based on the HNC PIREPs are examined for specific algorithm thresholdsin
Tables 9-11, for 3-, 6-, and 9-hr forecasts. Like Tables 5-7, these tables are based on a selection
of algorithm thresholds that result in values of PODy (for MOG PIREPS) that are similar to the
PODy vaue the AIRMETSs. Although the PODy value for the AIRMETS, based on the HNC
PIREPs, is dlightly smaller than the value for All PIREPs, the AIRMET statistics for All PIREPs
areused in Tables 9-11, to make the results comparable to the statisticsin Tables 5-7.

In general, the resultsin Tables 9-11 are very similar to the resultsin Tables 5-7. In
particular, the PODn values indicate the best performanceis by the AIRMETSs, DTF3, DTF4,
Ellrod-2 and ITFA; the TSS values are largest for the AIRMETS, DTF3, DTF4, DTF5, Ellrod-2,
and ITFA; and the Volume Efficiency values are largest for Ellrod-2 and ITFA, in addition to
ULTURSB. Finally, the largest values of the ROC curve area are achieved by DTF3, ITFA, and
Ellrod-2. An important difference between Tables 5-7 and Tables 9-11 isthe differencein
thresholds required to achieve PODy values similar to the values for the AIRMETS. This
differenceis particularly notable in Table 9 (3-hr forecasts) where all of the thresholds increase,
except for the threshold for the Richardson number. This adjustment in the threshol ds necessarily
means that the PODn and TSS valuesin Table 9 are larger than the PODn and TSS valuesin
Table 5, since the same sets of negative PIREPs and AV AR observations were used to compute
both sets of statistics. This result suggests that there is at least a small re-calibration of the
algorithms associated with using the more restrictive set of Y es PIREPs.

7.3 Summary

In general, differences found thus far among the performance characteristics of the
various algorithms are relatively small, except for certain differences that stand out. For example,
while ULTURB clearly achieves the highest Volume Efficiency, it does so by forecasting very
small discontinuous regions, and by mis-classifying many negative turbulence reports as positive.
Moreover, the results suggest that the SCATR index is not functioning correctly. Other
algorithms clearly do not perform as well as the top group of algorithms. In particular, CCAT,
the Richardson number, Dutton, and Shear generally exhibited poorer performance, overall, than
the other algorithms. Algorithms that performed the best overall include the DTF algorithms
(especiadly DTF3), Ellrod-2, and ITFA. Differencesin performance, based on PODy and PODn,
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associated with increases in lead time were found to be relatively small. Moreover, verification
curves based on % Volume did not vary with lead time, except for an apparent re-calibration of
specific threshold points. In addition, differences in the results associated with restricting the
PIREPs to Heavy aircraft and non-convective conditions appear to be small, and generally arein
the direction of adlight increase in PODy. Some differences also were noted between the real-
time and post-analysis results. These differences appear to be associated primarily with
differences in the methods used to associate forecasts to PIREPs. In addition, some differences
may result from the use of dightly different PIREP datasets and from different aggregations of
the data used in the analyses (e.g., some of the post-analysis results were based on aggregating
across issue time).

8. Conclusions and discussion

This intercomparison exercise not only developed a baseline for turbulence algorithm
development, but also tested the robustness of the verification methods. Comparisons of the
statistical results generated by the RTV S and the post-analysis indicate that the results are
somewhat sensitive to the method used to match turbulence forecasts to the observations. These
comparisons also indicated that the day-to-day statistics are unreliable and unstable, as a
consequence of small PIREP numbers, particularly when the observations are stratified by
aircraft weight, turbulence severity, or convection. Thisinstabilty is reduced when larger
numbers of PIREPs are obtained by combining the results across severa days, or when
computing overall statistics. Improvements in the PIREP decoders and the manner in which
PIREPs are reported would lead to increased numbers of reports, and greater stability in the
results.

Differences in the results between the real-time and post- analysis, which arise as aresult
of differencesin the approaches used to connect forecasts to PIREPs, are sometimes fairly large.
However, rather than creating a conflict, these differences expand the breadth of the analysis. In
particular, the different approaches, when used together, and in combination with appropriate
verification statistics, allow diagnosis of different characteristics of the algorithms' forecasting
capabilities.

Despite the methodological and data differences between the systems, the basic
conclusions are consistent between the real-time and post-analysis results. Overall, the statistical
results indicate that forecasting performance is similar among most of the turbulence algorithms.
However, some algorithms (e.g., Ellrod-2, DTF3, ITFA) appear to have somewhat better overall
performance characteristics than the other algorithms.

The analyses suggest the value of considering a variety of algorithm thresholds when
evaluating the turbulence algorithms. In particular, many of the differences among groups of
forecasts (e.g., between lead times) involved essentially are-calibration of the agorithms rather
than true changes in performance. This result would have been hidden if only single thresholds
were considered. Moreover, the verification curves provide atwo-dimensional approach for
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evaluating the superiority of one algorithm over another; such superiority would be difficult (or
impossible) to identify if only a single threshold were used for each algorithm.

The results also demonstrate the large trade-offs between the predicted extent of the
turbulence forecasts relative to their ability to detect the occurrence of turbulence. In addition,
the RTV S analyses indicated alarge variability in PODy among the 14 algorithms when
thresholds were selected to maximize TSS. However, the PODn values for a mgority of
algorithms in this analysis clustered above 0.80. This result suggests that the algorithms may be
able to capture areas with no turbulence more consistently than they can capture areas with
turbulence.

One important, missing component of these analysesis an indication of statistical
significance. Unfortunately, standard statistical methods to estimate significance, including
parametric confidence intervals, are inappropriate for application to these verification measures.
Effortswill be undertaken to develop methods that are appropriate. However, it will be difficult
(or impossible) to develop methods that take into account all the sources of uncertainty
associated with this analysis (e.g., the uncertainties associated with PIREP location and severity).

The results of this study suggest that further development of ITFA may benefit from
eliminating some algorithms. For example, SCATR seemsto have little or no skill at forecasting
turbulence. Shear is another algorithm that potentially could be excluded; this result may be
connected to the fact that shear is a component in many of the other turbulence algorithms.

The 1998-99 intercomparison results will be extended and analyzed further. Efforts will
be made to continue to fill in some of the missing algorithm data, including the creation of
algorithm output for the ITFA-S agorithm for a subset of the days. PIREPs that were recently
obtained from Northwest Airlines (NWA) aso will be used to enhance the PIREP dataset, and
NWA turbulence forecasts will be included in the intercomparison. The continuing analyses will
include a closer ook at short-term (perhaps over 3-or-more-day periods) variationsin the
verification statistics. These evaluations will allow identification of particular situationsin which
one algorithm performs better than another, as well as straightforward computation of confidence
intervals based on day-to-day variability. Further efforts also will be made to develop and apply
confidence intervals for the overal results. Finaly, available feature detectors (e.g., jet stream,
and possibly mountain wave) will be applied to the forecasts to determine the effects of these
features on the verification results.

Plans also are being made to implement a turbulence a gorithm intercomparison exercise
for the winter of 1999-2000 (perhaps not beginning until February 2000). This intercomparison
again will involve areal-time component using the RTV'S, followed by an in-depth post-analysis.
A number of gquestions need to be answered prior to the start of this exercise. These questions
include the following: (i) Which agorithms should be included (it would be desirable to reduce
the number of algorithms, if possible)? (ii) Which thresholds should be included in the RTVS
analyses? (iii)Which subsets of PIREPs should be used — are the benefits of using the HNC
reports great enough to counter-balance the effects of the very reduced numbers of observations?
(iv) Should the evaluation again be restricted to upper levels in the atmosphere? These questions
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should be discussed by the Turbulence PDT as part of the planning process for the next
intercomparison exercise.

The 1999-2000 and other future turbulence intercomparison exercises would benefit from
anumber of improvements to the data and analysis methods. Among the improvements which
will be undertaken before the next intercomparison exercise is the implementation of an
enhanced PIREP decoder. Utilization of the more systematic eddy dissipation rate observations,
when they are available, also will aid in reducing biases and uncertainty in future verification
analyses. In addition, NWA PIREPs will add extrainformation that has not been available
previously. These improvements will increase the reliability of the verification statistics.
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Appendix A

On the Computation of FAR using PIREP Data

It has been suggested in previous studies (Brown et a., 1997; Brown and Mahoney, 1998)
that it is inappropriate to compute verification statistics such as the false alarm ratio (FAR) when
using PIREP data for verification of icing and turbulence forecasts. In particular, itis
inappropriate to compute statistics that are dependent on the forecast distribution, because the
PIREPs generally do not adequately represent the forecast grid. These suggestions have been
supported by simple simulation studies that show that FAR and other verification statistics are far
from correct, and are basically meaningless when computed using PIREP data (e.g., Brown
1996).

The underlying problem is that the value of FAR computed using PIREPs is much more
dependent on the distribution of observations between Y es and No PIREPs than it is on the actual
extent of the over-forecasting. This note provides a simple example, based on operational
turbulence forecasts, to demonstrate the severity of this problem. In particular, Table A1 shows a
2x2 verification contingency table for turbulence AIRMETSs that were included in the winter
1998-99 turbulence algorithm.

Table Al: Sample contingency table for winter 1998-99 turbulence AIRMETS, with with
both Yesand No observations based on PIREPs

Observation
Forecast Yes No Tota
Yes 3,123 2,084 5,207
No 2,328 5,279 7,607
Total 5,451 7,363 12,814
Using this table we can compute
PODy = 0.573

and PODn = 0.717.

Directly computing FAR and Bias, we obtain
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FAR; =0.40
and Bias; = 0.96.

Directly using the information in Table 1 also implies that the * climatological” probability of
turbulence,

pe1 = Pr{turbulence occurrence} = 0.40.

This estimate of turbulence occurrence appears to be alarge over-estimate of the probability of
turbulence in the atmosphere.

The numbersin Table Al are based on the use of PIREPs alone. In particular, negative
PIREPs were used to obtain the negative information. What would the results ook like if AVAR
datawere used instead of the negative PIREPS? Table A2 contains the counts associated with
using positive PIREPs for the Y es observations and AVARSs for the No observations.

Table A2: Asin Table A1, but with No observations based on AVAR data.

Observation
Forecast Yes No Tota
Yes 3,123 62,084 65,207
No 2,328 135,636 137,964
Total 5,451 197,720 203,171
From Table A2, we can compute
PODy = 0.573

and PODn = 0.686.

Thus, these two statistics change very little as aresult of the change in observations of No
turbulence. However, if we compute FAR, pc, and Bias, we obtain the following very different
results:

FAR, = 0.95
Pz = 0.03

and Bias, = 12.0.
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In particular, FAR; is much larger than FAR;; pc2 is much smaller than pe; (Simply because there
are more AVAR than no-PIREP observations); and Bias, implies a huge amount of
overforecasting, whereas Bias, suggests forecasts that are basically unbiased.

Which of these two very different sets of resultsis correct? The PODy and PODn values
are nearly identical between the tables, yet the increase in the number of No observations has led
to ahuge change in the other statistics. Similar effects would be associated with changing the
number of Y es observations, say, by directly collecting more PIREPs. What is the effect of all the
PIREPs that don’t make it through the PIREP collection and distribution system, as well asthe
decoder? The correct answer to the first question above probably is neither, because neither set of
counts is likely to represent the (unknown) true distribution of turbulence in the atmosphere.

This little example hopefully has demonstrated the fact that FAR and Bias should never
be computed in thisway using standard PI REP observations. This statement applies to the
verification of both turbulence and icing forecasts. The problem, as stated earlier, is that these
statistics are very sensitive to the distribution of Yesand No PIREP/AV AR observations. Using
the Y es and No counts together to compute FAR implies that the value gf p. computed from their
combination also is representative of the probability of icing/turbulence™. This conclusion clearly
IS inappropriate.

® Infact, it can be shown that FAR is adirect function of p., PODy, and PODn.
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Appendix B

Comparison of Methodsto Match PIREPsto Gridded For ecasts

Asnoted in Sections 6 and 7, some differences in the verification results, between the
RTV S and post-analysis, were found to be associated with the different methods used to
associate the PIREPs to the gridded forecasts. The extent of these differencesis considered here.
However, because the set of PIREPs available to the NCAR verification system is somewhat
different from the PIREPs availableto RTVS, it is not possible to make this comparison directly
by comparing the results computed by the two systems (i.e., any differences noted would include
both effects — the data and the matching methods — making it impossible to separate out the
matching method effect alone). Instead, the RTV S system was mimicked (as closely as possible)
using the NCAR system, so that exactly the same verification data were used by both methods.
Specifically, the interpolation approach used by RTV S was mimicked using a simple average of
the algorithm output at the four grid points surrounding the PIREP; in contrast, as noted in
Section 5, the NCAR method involves matching the PIREP to the maximum value at the four
surrounding grid points.

Figure B1 shows the results of applying the two methods, for two different algorithms.
Results for the AIRMETSs also are shown, for comparative purposes. Specifically, Figure B1
shows the curves relating PODy to 1-PODn and % Volume, for the two different methods, where
the NCAR method is denoted as “Matched” and the pseudo-RTV S method is denoted as
“Averaged.” The curves are based on 3-hr ITFA and ULTURB forecasts.

Asshown in Fig. B1(a), the differences between methods are small for the curves relating
PODy to 1-PODn. In fact, for both algorithms, the main change seems to be are-calibration. That
is, for the averaging method, smaller thresholds are required to attain the same value of PODy as
with the matching method, yet the relationship between PODy and 1-PODn remains about the
same with both methods.

In contrast, the relationship between PODy and % V olume appears to be quite dependent
on the matching method used to associate the forecasts to the PIREPs, with the largest
differences associated with ULTURB. In particular, with the matching method, ULTURB attains
amuch larger PODy for the same % V olume as with the averaging method. Similar but smaller
differences are apparent for ITFA.

Note that the “ Averaged” curve for ULTURB in Fig. B1(b) has asimilar shapeto the
RTVS curve for ULTURB shown in Fig. 5, and that this curve has a different character than the
curves for the other algorithms. As noted in Section 7, the PODy vs. % Volume curve for
ULTURB dsoisvery different from the curves for the other algorithms when the NCAR
matching method is used. These results suggest that the nature of ULTURB may different in
some respects from the other algorithms. Figure B2 shows an example of ULTURB forecasts at
35,000 ft, with athreshold of 0.100, for one forecast. As shown in thisfigure, the ULTURB
output is very scattered, for the most part, with alot of very small digoint areas. Algorithm
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output features of thistype could easily lead to larger PODy values, associated with arelatively
small % Volume, using a method that takes into account the largest forecast value among four
gridpoints. In contrast, many of the sets of four grid points would lead to “No” forecasts when
using the interpolation or averaging method.
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FigureB1. Verification curvesfor 3-hr ITFA and ULTURB forecasts, using two different
methods for matching PIREPsto algorithm output. See text for explanation of methods.

Figure B2. Sample of algorithm output for UL TURB at 35,000 ft, with a threshold of 0.10.
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Table 1 : Basic contingency table for evaluation of dichotomous (e.g., Yes/No) for ecasts.
Elementsin the cells are the counts of for ecast-observation pairs.

Observation
Forecast Yes No Total
Yes YY YN YY+YN
No NY NN NY+NN
Total YY+NY YN+NN YY+YN+NY+NN

Table 2: Verification statistics used in this study.

Statistic Definition Description
PODy YY/(YY+NY) Probability of Detection of “Yes” observations
PODnN NN/(YN+NN) Probability of Detection of “No” observations
TSS PODy + PODn -1 True Skill Statistic
Curve Area | Area under the curve relating Area under the curve relating PODy and 1-PODn

PODy and 1-PODn

% Area (Forecast Area) / (Total Area) | % of the area of the continental U.S. where turbulence is
forecast to occur on at least one model level
x 100
% Volume (Forecast Vol) / (Total Vol) % of the total air space volume that is impacted by the
forecast
x 100
Volume (PODy x 100) / % Volume PODy (x 100) per unit % Volume

efficiency
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Table 3: Algorithm thresholdsused in RTVS analyses.

Algorithm Threshold Values
BT3.0 .007 .02 .07 1
Brown-1 .00002 .00005 .0001 .0002
CCAT 10™ 107 10° 5x10®
DTF3 0.1 0.5 0.9 1.3
DTF4 0.2 1.0 35 5.0
DTF5 0.05 0.10 0.20 0.30
Dutton 2.0 7.0 15.0 30.0
Ellrod-2 10°® 10" 4x107 6x10°"
ITFA 0.01 0.10 0.25 0.50
ITFA-S 0.01 0.10 0.25 0.50
Richardson 1.0 3.0 5.0 9.0
SCATR 10° 10 10° 10
Shear 0.001 0.002 0.004 0.01
ULTURB 0.0001 0.001 0.02 0.10




Table 4: Algorithm thresholds used in post-analysis.

Algorithm | Thresholds

Brown-1 0.035, 0.050, 0.060, 0.070, 0.075, 0.080, 0.090, 0.100, 0.120, 0.140, 0.150, 0.200, 0.300

BT3.0 10°,10°,10™, 0.005, 0.100

CCAT 23_170'10, 107, 3x107, 4x10°, 5x10°, 7x107°, 9x10°°, 10°®, 1.5x10°®, 2x10°®, 3.5x10°®, 5x10-,

DTF3 0.10, 0.20, 0.30, 0.40, 0.45, 0.50, 0.70, 0.90, 1.30, 2.00, 3.00

DTF4 0.2,0.5,1.0,15,2.0,25,3.0,3.5,4.0,5.0, 7.0, 8.0

DTF5 0.06, 0.08, 0.10, 0.12, 0.15, 0.17, 0.20, 0.25, 0.30, 0.50, 0.70, 0.90

Dutton 7,10, 12, 15, 18, 20, 22, 25, 30, 40, 45, 60, 80

Ellrod-2 107, 2x107, 2.5x107, 3x107, 3.5x10”, 4x107, 5x107, 6x10”, 7x107, 9x10”, 12x107,
16x10”

ITFA 0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50

Richardson | 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0

SCATR 107,10°,10™ 5x10™, 0.001, 0.003, 0.005

Shear 0.002, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.015, 0.020

ULTURB 0.001, 0.020, 0.030, 0.040, 0.050, 0.060, 0.080, 0.100, 0.150, 0.200, 0.300
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Table5: Verification statisticsfor all 3-hr forecasts (all issue times combined), for thresholdswith PODy (MOG PIREPS)
about the same asthe PODy for AIRMETSs. Verification based on All PIREPs. Overall area under the PODy vs. 1-PODn curve
isalso presented.

PODy PODy PODn PODn TSS TSS Curve Average Volume
(MOG) (PIREPS) (AVARS) (PIREPS) (AVARS) Area % Volume | Efficiency

Algorithm | Threshold (Al
AIRMETSs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8
Brown-1 0.09 0.58 0.62 0.62 0.58 0.24 0.20 0.67 26.7 2.3
CCAT 5x10° 0.64 0.66 0.44 0.54 0.11 0.20 0.59 33.9 2.0
DTF3 0.70 0.58 0.63 0.67 0.67 0.30 0.30 0.71 26.5 2.4
DTF4 2.50 0.56 0.60 0.65 0.68 0.26 0.28 0.68 27.0 2.2
DTF5 0.15 0.59 0.64 0.62 0.65 0.26 0.29 0.69 294 2.2
Dutton 22.00 0.58 0.61 0.62 0.64 0.23 0.25 0.66 28.3 2.2
Ellrod-2 4x10”7 0.60 0.65 0.68 0.65 0.33 0.31 0.72 22.9 2.8
ITFA 0.07 0.56 0.62 0.70 0.69 0.31 0.31 0.71 22.2 2.8
Richardson 4.00 0.56 0.61 0.68 0.64 0.29 0.26 0.71 26.1 2.3
SCATR 0.0001 0.70 0.68 0.30 0.31 -0.02 -0.02 0.46 45.4 1.5
Shear 0.006 0.61 0.65 0.58 0.61 0.23 0.26 0.67 31.0 2.1
ULTURB 0.06 0.63 0.66 0.48 0.49 0.13 0.15 0.61 16.6 3.9
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Table6: Asin Table5, for 6-hr forecasts.

PODy PODy PODn PODn TSS TSS Curve Average Volume
(MOG) (PIREPS) (AVARS) (PIREPS) (AVARS) Area % Volume | Efficiency

Algorithm | Threshold (Al
AIRMETSs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8
Brown-1 0.09 0.57 0.61 0.64 0.58 0.25 0.20 0.68 25.9 2.4
CCAT 7x10°° 0.58 0.62 0.54 0.58 0.16 0.19 0.64 275 2.2
DTF3 0.70 0.55 0.60 0.72 0.69 0.33 0.30 0.73 23.6 2.6
DTF4 2.50 0.54 0.60 0.70 0.69 0.29 0.28 0.70 24.4 2.4
DTF5 0.15 0.57 0.62 0.67 0.66 0.29 0.28 0.70 26.7 2.3
Dutton 22.00 0.58 0.63 0.64 0.64 0.27 0.26 0.69 26.2 2.4
Ellrod-2 4x10°7 0.57 0.63 0.70 0.66 0.33 0.29 0.73 20.8 3.0
ITFA 0.07 0.53 0.60 0.72 0.70 0.32 0.30 0.72 19.6 3.0
Richardson 4.00 0.54 0.59 0.71 0.67 0.30 0.26 0.72 23.6 2.5
SCATR 0.0001 0.68 0.68 0.35 0.31 0.03 -0.01 0.50 44.6 1.5
Shear 0.006 0.60 0.65 0.61 0.61 0.26 0.26 0.68 28.6 2.3
ULTURB 0.07 0.56 0.60 0.57 0.55 0.17 0.15 0.62 13.7 4.4
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Table7: Asin Table5, for 9-hr forecasts.

PODy PODy PODn PODn TSS TSS Curve Average Volume
(MOG) (PIREPS) (AVARS) (PIREPS) (AVARS) Area % Volume | Efficiency

Algorithm | Threshold (Al
AIRMETSs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8
Brown-1 0.09 0.55 0.59 0.63 0.59 0.22 0.18 0.65 25.0 24
CCAT 7x10°° 0.57 0.60 0.54 0.60 0.14 0.20 0.62 26.0 2.3
DTF3 0.60 0.57 0.62 0.68 0.67 0.31 0.30 0.71 25.9 2.4
DTF4 2.00 0.58 0.63 0.62 0.64 0.26 0.27 0.68 29.3 2.1
DTF5 0.12 0.63 0.67 0.57 0.60 0.25 0.27 0.68 33.3 2.0
Dutton 20.00 0.58 0.62 0.60 0.61 0.22 0.23 0.66 28.9 2.1
Ellrod-2 3.5x10” 0.58 0.62 0.64 0.64 0.27 0.26 0.69 23.1 2.7
ITFA 0.05 0.59 0.64 0.61 0.63 0.26 0.27 0.69 25.1 2.6
Richardson 5.00 0.57 0.63 0.66 0.62 0.29 0.25 0.69 28.1 2.2
SCATR 0.0001 0.68 0.66 0.36 0.30 0.03 -0.04 0.48 44.5 1.5
Shear 0.006 0.56 0.61 0.63 0.64 0.24 0.25 0.66 26.7 2.3
ULTURB 0.07 0.59 0.62 0.59 0.55 0.20 0.17 0.64 13.4 4.6
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Table 8: Variationsin verification statistics with lead time (all issue times combined), for
some algorithms and thresholds. Statistics based on All PIREPs.

Lead PODy PODnN Curve | Ave.% | Ave.% | Volume
(hr) (MOG) | (PIREPS) area Area Volume Eff.
Algorithm | Thresh TSS
3 0.63 0.67 0.30 0.71 84.7 26.5 2.4
DTF3 0.70 6 0.60 0.72 0.33 0.73 80.0 23.6 2.6
9 0.56 0.73 0.29 0.71 75.6 21.5 2.6
3 0.65 0.68 0.33 0.72 76.4 22.9 2.8
Ellrod-2 4x10”7 6 0.63 0.70 0.33 0.73 72.1 20.8 3.0
9 0.56 0.70 0.26 0.69 68.0 19.0 3.0
3 0.62 0.70 0.31 0.71 77.8 22.2 2.8
ITFA 0.07 6 0.60 0.72 0.32 0.72 72.0 19.6 3.1
9 0.54 0.73 0.27 0.69 66.5 18.0 3.0
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Table 9: Verification statisticsfor all 3-hr forecasts (all issue times combined), for thresholdswith PODy (MOG PIREPS)
about the same asthe PODy for AIRMETSs (for All PIREPS). Verification based on Heavy, Non-convective (HNC) PIREPs.
Overall area under the PODy vs. 1-PODn curve also is presented.

PODy PODy PODn PODn TSS TSS Curve Average Volume
(MOG) (PIREPS) (AVARS) (PIREPS) (AVARS) Area % Volume | Efficiency

Algorithm | Threshold (Al
AIRMETs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8
Brown-1 0.10 0.63 0.64 0.62 0.58 0.29 0.23 0.69 20.0 2.9
CCAT 9x10™° 0.58 0.59 0.58 0.65 0.17 0.25 0.62 23.5 2.5
DTF3 0.80 0.58 0.61 0.72 0.71 0.33 0.32 0.72 22.7 2.7
DTF4 2.75 0.57 0.61 0.69 0.71 0.29 0.32 0.70 24.0 2.5
DTF5 0.17 0.58 0.62 0.68 0.70 0.29 0.32 0.70 25.2 2.5
Dutton 25.00 0.57 0.60 0.68 0.70 0.28 0.30 0.69 23.0 2.6
Ellrod-2 4.5x107 0.60 0.63 0.72 0.70 0.35 0.32 0.73 194 3.2
ITFA 0.08 0.59 0.62 0.73 0.72 0.36 0.35 0.73 194 3.2
Richardson 4.00 0.57 0.60 0.68 0.64 0.28 0.24 0.70 26.1 2.3
SCATR 0.0005 0.55 0.54 0.42 0.42 -0.04 -0.04 0.47 33.0 1.6
Shear 0.0065 0.60 0.63 0.63 0.65 0.26 0.28 0.68 27.1 2.3
ULTURB 0.07 0.59 0.59 0.56 0.57 0.16 0.16 0.62 13.5 4.4




Table10: Asin Table9, for 6-hr forecasts.

PODy PODy PODn PODn TSS TSS Curve Average Volume
(MOG) (PIREPS) (AVARS) (PIREPS) (AVARS) Area Efficiency

Algorithm | Threshold (Al % Volume
AIRMETSs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8
Brown-1 0.09 0.60 0.62 0.64 0.58 0.26 0.21 0.69 25.9 2.4
CCAT 7x10°° 0.61 0.63 0.54 0.58 0.18 0.21 0.65 27.5 2.3
DTF3 0.70 0.62 0.63 0.72 0.69 0.35 0.32 0.74 23.6 2.7
DTF4 2.50 0.60 0.62 0.70 0.69 0.31 0.30 0.71 24.4 2.5
DTF5 0.17 0.57 0.60 0.72 0.71 0.31 0.30 0.71 22.5 2.6
Dutton 25.00 0.56 0.60 0.72 0.70 0.31 0.30 0.71 20.8 2.9
Ellrod-2 4.5x107 0.58 0.61 0.76 0.71 0.37 0.32 0.75 17.4 3.5
ITFA 0.07 0.58 0.62 0.72 0.70 0.34 0.32 0.74 19.6 3.1
Richardson 4.00 0.58 0.60 0.71 0.67 0.31 0.28 0.73 23.6 2.6
SCATR 0.0005 0.51 0.51 0.43 0.42 -0.06 -0.08 0.49 32.6 1.6
Shear 0.0065 0.60 0.63 0.67 0.66 0.30 0.29 0.70 24.7 2.6
ULTURB 0.07 0.58 0.61 0.57 0.55 0.18 0.16 0.63 13.7 4.5
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Table11: Asin Table9, for 9-hr forecasts.

PODy PODy PODn PODn TSS TSS Curve Average Volume
(MOG) (PIREPS) (AVARS) (PIREPS) (AVARS) Area Efficiency

Algorithm | Threshold (Al % Volume
AIRMETSs -- 0.54 0.61 0.72 0.69 0.32 0.29 -- 21.7 2.8
Brown-1 0.09 0.58 0.61 0.63 0.59 0.24 0.20 0.67 25.0 2.4
CCAT 7x10°° 0.60 0.63 0.54 0.60 0.16 0.22 0.64 26.0 2.4
DTF3 0.60 0.59 0.62 0.68 0.67 0.30 0.29 0.71 25.9 2.4
DTF4 2.00 0.60 0.63 0.62 0.64 0.25 0.26 0.68 29.3 2.1
DTF5 0.14 0.57 0.60 0.65 0.66 0.25 0.26 0.68 26.9 2.2
Dutton 20.00 0.60 0.64 0.60 0.61 0.23 0.25 0.67 28.9 2.2
Ellrod-2 4x10°7 0.57 0.59 0.70 0.69 0.29 0.29 0.71 19.0 3.1
ITFA 0.06 0.57 0.61 0.67 0.68 0.28 0.29 0.72 21.2 2.9
Richardson 5.00 0.60 0.63 0.66 0.62 0.28 0.25 0.69 28.0 2.2
SCATR 0.0001 0.64 0.64 0.36 0.30 0.00 -0.06 0.51 44.5 1.4
Shear 0.006 0.57 0.62 0.63 0.64 0.24 0.26 0.67 26.7 2.3
ULTURB 0.07 0.61 0.63 0.59 0.55 0.21 0.18 0.64 13.4 4.7
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shown on one plot for comparison purposes. Each line on the display represents 1 of the 14 algorithms and each segment on the line represents a
different threshold for that algorithm (statistics were generated for 4 different thresholds for each algorithm). To access the displays, select the
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Figure 1. Web-based menu display for algorithm threshold comparison plots. User chooses
a statistic, issue/lead time, and observation type. User submitsrequest and a GIF image of
the plot will appear on the screen. AVAR observations arelisted seperately on this menu.
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Figure 6: Same as Fig. 4, except for the 1500 UTC, 9-hr lead.
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Dec 21, 98 — Mar 31, 99/127_06h
Haavy Non—Convective PIREP Locations
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Figure7: Same as Fig. 4, except for the 1200 UTC issuance, 6-hr lead.
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Dec 21, 98 — Mar 31, 99/187_06h
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Figure8: SameasFig. 4, except for the 1800 UTC issuance, 6-hr lead.
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Figure 11: Height serieschart for the Ellrod index for 21 December 1998 - 31 March 1999
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Figure 12: Algorithm performance curvesfor 3-hr forecasts, using All PIREPs, showing
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and 1-PODn for (c) algorithm group A and (d) algorithm group B. PODn isbased on

PIREPs.
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Figure 14: Asin Figure 13, for 9-hr forecasts, based on All PIREPs.
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Figure 15: Comparison of resultsfor different lead timesfor 3 algorithms. Statistics based

on All PIREPs.
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Figure 16: Resultsfor different lead times, for forecastsvalid at 2100 UTC, with statistics

based on All PIREPs.
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Figure 17: Comparison of resultsfor different issue times, for forecastswith a 6-hr lead
time. Statistics based on All PIREPs.
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Figure 18: Asin Figure 13, for 3-hr forecasts, with statistics based on HNC PIREPs.
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Figure 19: Asin Figure 13, for 6-hr forecasts, with statistics based on HNC PIREPs.
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Figure 21: Comparison of resultsfor different groupingsof PIREPs, for 3 algorithms, 3-hr
forecasts.
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Figure 22: Comparison of resultsfor different groupingsof PIREPs, for 3 algorithms, 6-hr

forecasts.
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